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Allele frequencies at polymorphic sites differ
across human populations
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THE MIGRATION OF ANATOMICALLY MODERN HUMANS

Evidence from fossills, ancient artefacts and genetic malyses combine 1o tell & compeliing story
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European and Native American allele frequencies for the 1,649 AlMs (Figure 4
from Price et al., AJHG 2007)



Differences in allele frequencies can be used to reconstruct
human population structure using genetic data from a number of
polymorphic loci

Rosenberg et al. 2002: genotyped 1052 individuals from 52
populations at 377 microsatellites
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Fine-scale genetic structure of human

populations using 650,000 markers
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Li et al. Science 2008



The admixture model

Ancestral populations represented Admixture

as allele frequency profiles coefficients for
one individual

C.S.Asia p—

» Allele frequencies for each cluster derived using genotypes of
individuals that have non-zero admixture coefficient for that cluster

« Each individual’s admixture estimated using allele frequencies



Methods for reconstructing population
structure

« STRUCTURE (Pritchard et al. 2000) : Bayesian MCMC method for
simultaneous inference of allele frequencies for ‘K’ populations and
admixture coefficients for each individual

 very popular and useful tool

* Not scalable to genome-wide datasets

« ADMIXTURE (Alexander et al. 2009): Maximum likelihood approach
to population structure that used fast optimization algorithms for
efficiency



Important to control for population
stratification in disease association studies
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Cases and controls are sampled
from two populations in different
proportions

Loci that differ in allele frequency
between the two ancestral
populations will show association
with the phenotype



Motivation for our work

* Previous methods designed for unsupervised population
structure analysis but not for individual ancestry
determination

* Analysis of one new individual requires genotype data for
individuals with known ancestry and analysis of all individuals

« Cannot handle sequence data where genotypes are not known
with confidence, e.g. low coverage sequence data

« Efficient method designed for ancestry estimation for a single
individual

« Utilizes allele frequency from known populations

* Works with genotype and sequence data (BAM, VCF files)



Admixture likelihood model

 INPUT:
» Allele frequencies at ‘n’ SNPs for K populations

« Genotypes or genotype likelihoods for an individual

« OUTPUT: A=[aq, a,, .... ak] of admixture proportions such that the
sum of admixture proportions = 1
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Admixture likelihood model (contd..)

L(A) = In(Pr(G; = gi|A))

=1

Pr(G; =0]A) = (1 — f;)°

k
Pr(G: = 114) = 2/,(1 - f,) fi=2_—14q;

Pr(G; =2|A) = f?'g

Non-linear optimization problem with K variables with constraints
on the admixture coefficients



Optimization using the BFGS method

Broyden-Fletcher-Goldfarb-Shanno algorithm is a quasi-Newton
method for unconstrained non-linear optimization

Uses first derivatives and approximation of Hessian matrix
Features
* Good performance even for 1000’s of variables
« BFGS-B variant handles box constraints on variables
« Several open-source implementations are available

('L.J'

Constraint on sum can be addressed by replacing ¢; with T

First derivates can be easily calculated as:

OL(A) _ i {Qif}u g, 2-g)(1—gy) 2—g
da; = | fi  S(a) S(a) — fi S(a)



Parsimonious estimation of admixture
coefficients

« BFGS optimization finds maximum likelihood estimate of admixture
coefficients

« Useful to determine if a non-zero admixture coefficient is statistically
significant

 Previous methods estimate confidence intervals using
bootstrap

« Backward elimination method for variable selection to obtain
parsimonious vector of admixture coefficients

1. Find population ‘j’ for which setting a; to 0 reduces the likelihood
value the least

2. Fixa;= 0 and iterate until possible



Analysis of Mozabite individuals from

HGDP
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The population labels are as

Admixture proportions for 25 Mozabite individuals estimated using the HapMap reference
iAdmix (a) and ADMIXTURE(D).

follows: TSI (blue), CEU (light blue), MKK (red), YRI (green) and LWK (yellow).

populations and using two methods:

Figure 1:



Implementation and running time

Fortran implementation of L-BFGS-B algorithm (Zhu et al.
1997) was converted to C

Computational complexity is linear in number of SNPs and
number of reference populations

Number of iterations for convergence (delta < 0.0001) was
typically 20-30

Our method was 10-15 times faster than ADMIXTURE
(run in supervised mode) on simulated and real datasets



Estimating ancestry from sequence
reads



Likelihood model for sequence reads

» Uncertainty in genotype calls derived from sequence reads
« Genotype likelihoods Pr(reads | genotype) capture uncertainty

e =0.01

Pr(R; | g = AA) = 0.0097

>0 pP

Pr(R, | g =AC) = 0.0625

Pr(R, | g = CC) = 0.99 x 10-6
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Analysis of 1000 Genomes data

* Analyzed sequence reads for 6
individuals from the ASW (African-
Americans in USA) population

« BAM files for low-coverage whole
genome sequencing and exome-
sequencing available

» genotype likelihoods calculated for
249,075 SNPs that overlap the
HapMap allele frequency data
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Distribution of read-depth for HapMap3
sites
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Estimating ancestry of ‘artificial’ DNA pools

Cases Controls

DNA from multiple individuals (20-30) pooled to form a single sample
before sequencing



Cost-effective association studies using DNA pooling
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« 2000 individuals -> 100 pools of size 20

« Targeted sequencing of coding sequence of 200-250 genes can be
done for $60,000

 Individual sequencing would cost ~ $300,000



Ancestry estimation from pools:
simulated data

« Extended genotype likelihood calculation for ‘pooled’ genotypes

« Evaluated ability to detect admixture in a single pool using 1000
Genomes data

Table 2: Admixture coefficients for four pools constructed from 1000 Genomes data using allele frequencies
from 8 HapMap reference populations.

Pool composition Admixture coeflicients
CEU TSI CHB CHD JPT YRI LWK MKK
20 GBR 0.683  0.317 0 0 0 0 0 0
19 GBR. 1 CHS 0.6423 0.3042 0 0.0535 0 0 0 0
19 GBR. 1 LWK 0.6528 0.3125 0 0 0 0 0.0347 0
18 GBR., 1 LWK, 1 CHS 0.6064 0.3052 0 0.0562 0 0 0.0323 0




Summary

« Fast method for estimation of admixture coefficients from genotype
or sequence data using allele frequencies

* 10-15 times faster than previous methods
* Ancestry can be analyzed using even targeted sequence data
* Valuable tool for sequencing based studies

« Admixture likelihood model ignores linkage disequilibrium (LD)
between markers
» Haplotype-based likelihood model using haplotype frequencies and
dynamic programming
« BFGS algorithm can be used for optimization

« BFGS algorithm is a fast method for constrained high-dimensional
non-linear optimization

« Useful for many problems, e.g. genome scaffolding, logistic
regression for low-coverage sequence data, variant calling



